

Green Ship Design & Technology

by

Professor Yonghwan Kim

The LRET Research Collegium Southampton, 11 July – 2 September 2011

Yonghwan Kim

Seoul National University Seoul, Korea

Tokyo Protocol (1997) MEPC(2008)

Regulations by IMO & MARPOL

Key Actions by IMO

Ship Design: EEDI(Energy Efficiency Design Index) Ship Operation: SEEMP(Ship Energy Efficiency Management Plan) EEOI(Energy Efficiency Operational Indicator) Ship Market:

MBM(Market-Based Measure, Market-Based Mechanism)

Air pollution on voyage	Water pollution on voyage	Ground pollution on voyage	Pollution on ship recycling
SOx	Waterproof oil	Precipitates	Paint
NOx	Bilge water	Wastes	Plastic
GHG*	Cooling water Chemical residues		s Electrical product
PM*	Grey water	Grey water Oil residues	
VOC*	Antifouling materials		Chemical product
	Ballast water		1997
	Noise		

*GHG (Green House Gas; CO2) *PM (Particulate Matter) *VOC (Volatile Organic Compound)

Environmental Aspects and Impacts

Ship is the most efficient transportation in view of CO₂ emission

*Source: The Network for Transport and the Environment

Energy used (kilowatts) to carry 1 ton of cargo 1km

*Source: The Network for Transport and the Environment

Ship is the most efficient transportation in view of CO₂ emission

 CO_2 efficiency = CO_2 / (tonne * kilometre) ≈ Fuel consumption

 CO_2 = total CO_2 emitted from the vehicle within the period

tonne*kilometre = total actual number of tonne-kilometres of work done within the same period

GHG emissions from ships are predicted to be at least doubled by 2050

* Source ; Second IMO GHG Study 2009.

MARPOL

MARPOL 73/78 Regulations for Prevention & Control of Pollution from Ships

MARPOL ANNEX	Target
I	Oil
II	Noxious liquid substances in bulk
III	Harmful substances in packaged form
IV	Swages
V	Garbage
VI	Emissions

Emission Regulations - NOx

RPM	Tier 1 (current)	Tier II (from 2011.1.1)	Tier Ⅲ (from 2016.1.1)
Under 130	17.0 g/kWh	14.4 g/kWh	3.4 g/kWh
130 ~ 2000	45.0×n ^(-0.2) g/kWh	44.0×n ^(-0.23) g/kWh	9×n ^(-0.2) g/kWh
Over 2000	9.8 g/kWh	7.7 g/kWh	2.0 g/kWh

IMO NOx Tier II : Adopted on MEPC 58 (2008.10)
After 1 January 2011 (Keel Laying)
IMO NOx Tier III : Tentative Assent
After 1 January 2016 (Keel Laying)

Emission Regulations - SOx

Pagulation or Area		Sulfur Content				
Regulation of Area	201	0	2012	2015	2020	
Global Limit	4.5 %		3.5 %		0.5 %	Residual Fuel (IFO380 or LS
IMO ECA	1.5 % 1.0 % (after 2010.07)		0.1 %		Distillate Fuel (MGO)	
EU Port	0.1 %					
USCG (within 24NM)	0.5	%	0.1 %			

Emission Regulations – CO₂

EEDI (Energy Efficiency Design Index) – Technical Regulation

Design Specific

Goal of EEDI

- Mitigate CO₂ emissions
- Increase cargo carrying capacity
- Enhance speed performance

If using LNG as ship fuel,

- Reducing CO₂ emission of Main engine & Aux. engine
- Reducing EEDI

Emission Regulations – CO₂

EEOI (Energy Efficiency Operational Indicator) – Operational Regulation

Voyage Specific

Effect of slow steaming

Ship speed	Engine power
100 % Service Speed	90% MCR
70 % Service Speed	30% MCR
50 % Service Speed	15% MCR

Service speed = guarantee speed at NCR with 15% sea margin

Slow steaming as 70 % of design speed

- Reducing fuel consumptions down to abt. 30 %
- Reducing EEOI

Key Words in Current Green Ship Technology

1. Technical Energy Saving and CO2 Reduction

- Hull optimization appendages
- New propulsion system
- Waste energy recovery and renewable energy utilization

2. Slow Steaming Operation

Lower ship speed

FFDI

3. Increase Ship Capacity

Increase DWT

CO2 Reduction Potential by Known Technology and Practices

Category	Fuel/CO2 Saving	Combined	Combined	
DESIGN (New ships)				
Concept, speed &capability	2 ~ 50%			
Hull and superstructure	2 ~ 20%			
Power and propulsion systems	5 ~ 15%	10 ~ 50 %		
Low-carbon fuels	5 ~ 15%			
Renewable energy	$1 \sim 10\%$		25 ~ 75 %	
Exhaust gas CO2 reduction	0%			
OPERATION (All ships)				
Fleet management, logistics &incentives	5 ~ 50%	10 50 %		
Voyage optimization	$1 \sim 10\%$	10 ~ 50 %		
Energy management	$1 \sim 10\%$			

* Source ; IMO 2nd GHG Study

EEDI

 $\frac{\text{CO}_2 \text{from propulstion} + \text{CO}_2 \text{ from Auxiliaries} - \text{Efficient use of energy}}{f_t \cdot (\text{DWT}) \cdot (\text{ship speed}) \cdot f_w}$

EEDI Reduction

Structural optimization

Key Strategy of EEDI Reduction

Speed reduction, Increased Capacity, Improved technology

EEDI Reduction Requirement by IMO

Ship Type	DWT	2013-2014	2015-2019	2020-2024	2025-
Bulk	Over 20K	0	10	20	30
Duik	10K-20K	N/A	0-10	0-20	0-30
Coo Tonkor	Over 10K	0	10	20	30
Gas Talikei	2K-10K	N/A	0-10	0-20	0-30
Topkor	Over 20K	0	10	20	30
Tanker	4K-20K	N/A	0-10	0-20	0-30
	Over 15K	0	10	20	30
Containership	3K-15K	N/A	0-10	0-20	0-30
General Cargo	Over 15K	0	10	15	30
Ship	3K-15K	N/A	0-10	0-15	0-30
Refrigerated	Over 5K	0	10	15	30
Cargo Ship	3K-5K	N/A	0-10	0-15	0-30
Combination	Over 20K	0	10	20	30
Carrier	4L-20K	N/A	0-10	0-20	0-30

Estimated Time-Scale for Realization of Energy Efficiency Measures

	% reduction in CO ₂ emissions/tonne-mile with respect to 2008 baseline					
	2010	2015	2020	2030	2050	
Operational measures*	10	25	30	30	30	
Technical measures# (excluding fuels)		5	10	20	30	
* new & existing ships # newbuildings						

Source: IMO – MEPC 58 / Info 14

We need quick action in ship operation. Technology development requires longer-term activity.

Expected CO2 Reduction in Different Methods

Energy	LNG Fueled Propulsion	23%				
Design	Optimized Hull Form Design High Efficiency Propeller Design Bulbous Bow Optimization	2~3%				
	Shaft Generator	1%				
	Pre-Swirl Stator (PSS), Ducted PSS, Rudder Bulb Fin					
Device	Waste Heat Recovery System (WHRS)					
	NOx Reduction Device, SOx Reduction Device					
	Air Cavity System, Micro Bubble	7~10%				
Material	Advanced A/F Paint	2~5%				
Operation	Trim Optimization	3~4%				
Operation	Optimum Weather Routing	4~5%				

Resistance Components of Commercial Ships

Strategy should be different for different ship types.

Strategy Example: VLCC (15kt) and Containership (22.5 kt)

(N. Sasaki, NMRI)

Hull form design to reduced added resistance

- Added resistance is a key parameter in power reduction in waves.
- Optimum hull form design is needed in the viewpoint of added resistance.

Model ship of Ax-bow

(By courtesy of K. Matsumoto, Universal Shipbuilding Corporation, Japan)

Added resistance coefficient

Ship Design Procedure based on EEDI Concept

Strategy of Operation (e.g. Lloyd's Register)

Effects of Slow Steaming

Source: N. Sasaki (NMRI)

Effects of Slow Steaming

EEDI \propto Speed^{N-1}

Reduction of 3 knots will reduce about 20~30% of EEDI and 40~50% of FOC.

Generation of Containerships

Generation	Length	TEU	Category
1 (1956~1970)	~200m	~800	
2 (~1980)	~215m	~2,500	TANK DESCRIPTION OF TANK
3 (~1988)	~290m	~4,000	Panamax Class
4 (~2000)	~305m	~5,000	Post Panamax Class
5 (~2005)	~335m	~8,000	Post Panmax Plus Class
6 (~2010)	~400m	~14,500	New Panamax
7 (2011~)	~440m ?	~20,000?	Ultra Large

Trend of Ship Size

Delivered in 2000~2008 (2003 is missed)

Containership Orderbook

Capacity w.r.t. Contract Date

A New Breakthrough of Capacity

http://en.wikipedia.org/wiki/Container_ship#cite_note-unctad56-45

Largest ships

Main article: List of largest container ships

Economies of scale have dictated an upward trend in sizes of container ships in order to reduce costs. However, there are certain limitations to the size of container ships. Primarily, these are the availability of sufficiently large main engines and the availability of a sufficient number of ports and terminals prepared and equipped to handle ultra-large container ships. Furthermore, the permissible maximum ship dimensions in some of the world's main waterways could present an upper limit in terms of vessel growth. This primarily concerns the Suez Canal and the Singapore Strait.

In 2008 the South Korean shipbuilder STX announced plans to construct a container ship capable of carrying 22,000 TEU, ^[71] and with a proposed length of 450 metres and a beam of 60 metres.^[72] If constructed, the container ship would become the largest seagoing vessel in the world.^[73]

Since even very large container ships are vessels with relatively low draft compared to large tankers and bulk carriers, there is still considerable room for vessel growth. Compared to today's largest container ships, Maersk Line's 15,200 TEU *Emma Mærsk*-type series, a 20,000 TEU container ship would only be moderately larger in terms of exterior dimensions. According to a 2011 estimate, an ultra-large container ship of 20,250 TEU would measure 440m x 59m, compared to 397.71 x 56.40m for the *Emma Mærsk* class.^{[74][56]} It would have an estimated deadweight of circa 220,000 tons. While such a vessel might be near the upper limit for a Suez Canal passage, the so-called Malaccamax concept(for Straits of Malacca) does not apply for container ship s, since the Malacca and Singapore Straits' draft limit of about 21 metres is still above that of any conceivable container ship design. In 2011, Maersk announced plans to build a new "Triple E" family of containerships with a capacity of 18,000TEU, with an emphasis on lower fuel consumption.^[75]

In the present market situation, main engines will not be as much of a limiting factor for vessel growth either. The steadily rising cost of fuel oil has prompted most container lines to adapt a slower, more economical voyage speed, of about 21 knots, compared to earlier top speeds of 25 or more knots. Subsequently, new-built container ships can be fitted with a smaller main engine. Engine types fitted to today's ships of 14,000 TEU are thus sufficiently large to propel future vessels of 20,000 TEU or more. Maersk Line, the world's largest container shipping line, nevertheless opted for twin engines (two smaller engines working to separate propellers), when ordering a series of ten 18,000 TEU vessels from Daewoo Shipbuilding in February 2011.^[76] The ships will be delivered between 2013 and 2014.

Maersk Line ordered a series of ten 18,000 TEU vessels to Daewoo Shipbuilding in February 2011.

Ten largest container ship classes, listed by TEU capacity

Built	Name	Class size	Maximum TEU	Sources
2006	Emma Mærsk	8	15,200–15,550	[13][55][56][57]
2009	MSC Danit	7	14,000	[58][59]
2009	MSC Beatrice	7	14,000	[60]
2008	CMA CGM Thalassa	2	10,960	[61]
2005	Gudrun Mærsk	6	10,150	[62]
2002	Clementine Maersk	7	9,600	[63][64]
2006	COSCO Guangzhou	5	9,500	[65][66]
2006	CMA CGM Medea	4	9,415	[67][68]
2003	Axel Mærsk	6	9,310	[69]
2006	NYK Vega	3	9,200	[70]

Youtube:

Maersk Line Triple-E Smarter design, with room for 18,000 containers

GEOdreShipaDicerign Based on EEDI Evaluation

Green Ship EEDI Reduce Plan: Example of DSME

VLCC

Dimension	i (Lt 32	op x B 20 x 60 :	x D x 30.	x Td x Ts x Cb) 5 x 21 x 22.5 x 0.82
DWT (Ts)	: 3	19,600	MT	
Vs (Serv.)	:	16.2	→	15.9 Kts
DFOC	:	101.6	→	94.9 MT/day

Case 3) LFS design to be developed further

Parameter	Base Design	Improved (Case 1)	Improved (Case 2)	Improved (Case 3)
Applied Econologies	7S80MC-C8.2	~	÷	7S80ME-C8.2-GI
	N/A(derated)	10 % derated	10 % derated	10 % Derated
	PSS	PSS	PSS + WHRS(1200kW)	PSS + LFS*
	Prop Dia. 10.0 m	+	+	+
MCR (kW) x RPM	29,260 kW x 78.0	26,330 kW x 75.3	+	+
EEDI speed (knots)	15.9	15.5	+	+
SFOC at 75% MCR (g/kWh)	168.1	166.1	168.1	141.2
CO2 Emission (g/h)	12,075,373	10,757,969	10,166,380	8,182,817
EEDI (g/ton-mile)	2.515	2.241	2.115	1.646
EEDI/Reference line (%)	112 %	99.4 %	94.0 %	73.0 %

* LFS ; LNG Fueled Ship

Shaft Generator 1%	
Pre-Swirl Stator (PSS) Ducted PSS Rudder Bulb Fin3~6%	
Waste Heat Recovery System (WHRS) 3~4%	
Air Cavity System, Micro Bubble 7~10%	

Choice is dependent on ship type, cost, available space, etc.

Performance is dependent on ship type, operation condition, device type, etc.

Higher FOC Performance, but Higher Ship Cost

Shaft Generator

Shaft generator and WHRS of Siemens

Micro Bubble Injection

- Producing thin layer of bubbles
- Drag reduction by air bubbles
- The film of air generated by air injection on ship surface covered with very water repellent layer

Reduction of viscous frictional drag

Air Cavity System

Potential up to 15 % CO2 reduction

- Pressured air injection on ship bottom
- Air pressure injection requires some additional power (1~3%), but significant drag reduction is expected.

Pay-back time 2-4 years

Contra/Counter Rotating Propeller (CRP)

© Mitsubishi Heavy Industry

- Recovery of rotating energy loss originated by a propeller through the use of a contra rotating propeller
- Improves propulsion efficiency by10% to15%
- Reduces cavitation
- Benefits mainly at cruising speeds
- Complicated design and higher costs

Hull appendages

- Typical concepts to increase propulsion efficiency
 - Making uniform stern flow
 - Reducing rotating energy loss
 - Generating more thrust by appendage
- Improves propulsion efficiency by 3% to 5%

Pre-Swirl Stator (Daewoo Shipbuilding & Marine Engineering)

SAVER Fin (Samsung Heavy Industry)

Hull appendages

Sumitomo's Fin

Thrust fin (Hyundai Heavy Industry)

Duct Propeller

Improvement of flow field at propeller plane

- Thrust gain by duct
- Increase propeller efficiency by making stern flow uniform
- Many variations in application
- Improves propulsion efficiency by 3% to 8%

SSD (Super Stream Duct)

SDS (Semi-circular Duct System) SILD (Sumitomo Integrated Lammeneren Duct)

Mewis duct

46

Typical Energy Saving Devices: Their Efficiency

Source :N. Sasaki (NMRI)

Clean Energy Devices: Skysail

Ship with Skysails

- Kite operated in 100~500m height Expect 10~30% fuel reduction

GIANT KITE WILL PULL SHIP ACROSS ATLANTIC

The world's first commercial cargo ship powered partially by a kite is making its maiden voyage from Germany to Venezuela. The designers of the computer-guided kite say it could cut fuel consumption by an much as 20% and help reduce carbon discride emissions

NOTION INCOMES AND A CALL OF A DESCRIPTION OF A DESCRIPA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A

Clean Energy Devices: Solar Power

NYK Ship with solar cell

Concept design of AquaSailor with solar sail

Strategy: e.g. Lloyd's Register

Alternative Fuel/Energy for Ships: LNG as fuel

- Strong candidate for future propulsion engine
- Duel fuel: Diesel + LNG (ME-GI)
- Relatively cheap cost
- 15~25% Reduction of CO2
- Dramatic reduction of Nox, Sox, and air dust pollution
- e.g. 14,000TEU containership => 14M\$/year reduction of fuel cost (DSME)

Alternative Fuel/Energy for Ships: Electric & Nuclear

- Hybrid electric-diesel system, fuel cell, pod propulsion system
- Excellent performance for noise and vibration
- Good performance for constant thrust power and controllability
- Flexible arrangement
- Heavy machinery system
- Lower shaft transmission efficiency (about 7~8% less than other system)

- No air pollution
- 3-4 year operation with one supply
- Low fuel cost
 (1g uranium = 2 ton crude oil)
- No heavy duct system or large space for fuel
- Critical environmental problem in failure case
- Heavy safety system
- Very high ship cost
- Complicated system and many operators

More Emerging Technology

- Hull Painting and Ultrasonic Hull-Surface Coating
- Bio-diesel
- FOC Reduction by Path Optimization
- Fuel Machinery System Optimization
- Structural Material
- Optimum Ship Structural Design

..... (many more)

Future Issue

Which will be more ?

DSME Econology Plan

Econology = Ecology + Economy + Technology

High Performance Ship Design

- Optimum Dimensions
- Excellent Speed Performance
- Maximum Capacity (DWT, VOL)
- Competitive FOC
- Safety

Conventional Design Goals

Green Enhanced Design

 $Fuel(= CO_2)$ Saving Max. (EEDI)

Efficient Operation (EEOI)

Emission Reduction

Less Maintenance

New Requirements of Environmental Associations & Shipping Industry

Hi-Performance & Environment Friendly Ship

APL's Concept

APL's Concept for Environmental Friendly Ship

Building environmentally friendly ships of the future...

Super Eco Ship 2030 (NYK, Japan)

We need to consider all the aspects for green ship.

Global Maritime Activity for GHS Reduction

Some green innovative programs are already underway at ports around the globe to reduce their carbon footprint

The mitigation measures can be accomplished with the help of a regulatory and political framework promoting such innovation into an industry

Trends of Green issues and Impact on Bhioping and Forts
Thursday, 07 April 2011
© Det Norske Veritas AB. All rights reserved. 13
MANACING BUSK
Source : Svensen (MTEC 2011)

Environment Friendly Economical Operation

Through Green Ship Technologies

Acknowledgment for presentation materials

Daewoo Shipbuilding & Marine Engineering Korean Ministry of Knowledge and Economy

References

- S. Hirdaris, Lloyd's Register Strategic Research in short and long term technologies, 2011
- H.O.H. Kristensen, Model for Environmental Assessment of Container Ship Transport, 2010
- O.Y. Kwon, DSME GreenShip 18,000TEU Container Carrier, 2011
- N.B. Mortensen, Reduction of Green House Gas Emissions from Ships, Tripartite Meeting, 2007
- SIMENS, Solutions for Green Ship Operation, Asia Pacific Maritime, March 2010
- G. T. Poh, Global Approach towards Green Shipping: Strategies and Perspectives of a Shipping Line, MTEC 2011
- N. Sasaki, An application of GHG emission reduction technologies in the future: The concept of GHG technologies road map, 2009
- C. Schack, Green Ship of the Future, 2009
- T.E. Svensen, Trends of Green Issues and Impact on Shipping and Ports, MTEC 2011